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Abstract 

FRET experiments can yield state-specific structural information on complex dynamic biomolecular 
assemblies. However, FRET experiments need to be combined with computer simulations to overcome their 
sparsity. We introduce (i) an automated FRET experiment design tool determining optimal FRET pairs for 
structural modeling, (ii) a protocol for efficient FRET-assisted computational structural modeling at multiple 
scales, and (iii) a quantitative quality estimate for judging the accuracy of determined structures. We tested 
against simulated and experimental data. 

Main text 

Structures of biomacromolecules and their complexes are often key to understanding the molecules’ 
functions and underlying mechanisms, and therefore can be a prerequisite for related biological and medical 
developments. For certain classes of systems, including multi-domain proteins, biomacromolecular 
complexes, dynamic systems with unstructured regions, and systems with lowly populated conformational 
states, experimental structure determination is challenging. For such complex systems, contemporary 
computational structure prediction tools1-5 often yield several alternative models, which may contain 
different domain folds and supertertiary structures, particularly if template structures of homologous proteins 
are not available. FRET experiments can alleviate these difficulties in that they yield state-specific structural 
information on complex constructs, even for very dynamic systems with short-lived states in the microsecond 
time scale6-10. However, FRET experiments need to be combined with computer simulations to solve the 
issue that FRET data is usually too sparse to cover all structural details11,12. The problem of quantitative 
accuracy evaluation (as opposed to precision) remained largely unaddressed as well. Here, we introduce (i) 
methodological developments for an automated design of FRET experiments that aim at obtaining the most 
informative set of FRET pairs optimal for structural modeling, and (ii) a protocol for efficient structure 
determination and quantitative quality estimation based on such FRET data and computational modeling at 
multiple scales.  

We devised an iterative workflow for FRET-assisted modeling consisting of six steps (Fig. 1a), and 
developed the related software (see Code Availability below): (1) collection of prior knowledge, 
(2) generation of an initial structural ensemble, (3) selection of the most informative FRET pairs, 
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(4) acquisition and analysis of the experimental data, (5) FRET screening (a statistical quality assessment 
using a χ௡

ଶ  criterion (Online Methods eq. 8), (6) FRET-guided structural sampling. This workflow is 
exemplified for the E. coli YaaA protein (YaaA, Fig. 1b-h). 
In step 1, prior information is obtained from structures in the PDB of other states of a given target, homology 
models, or structural models built with other computational structure prediction tools1-5 (Fig. 1b). In step 2, 
this initial structural ensemble is expanded by conformational sampling (Fig. 1c). For this, multiple 
unrestrained simulations using structures obtained in the first step as seeds are performed using the NMSim 
approach, which performs normal mode-based geometric simulations for multiscale modeling of protein 
conformational changes13 (http://nmsim.de). For YaaA, prior structures were taken from the computational 
structure predictions submitted to the CASP 11 experiment (T806)14 (Online Methods section 1). For the 
other proteins, seed structures corresponding to conformational states different from the ‘true’ one were 
taken from the PDB (Table 4). In step 3, we use a novel algorithm for experiment planning to automatically 
determine a set of most informative FRET pairs (Fig. 1d, Supplementary Fig. 1, Supplementary Table 1) 
optimized for highest model precision that is based on a given prior structural ensemble. Additionally, our 
tool for experimental design can consider user-specified labeling site accessibility, chemical nature, and 
influence on function and stability as determined from mutation analysis or sequence coevolution data 
(Online Methods section 4). A higher number of measured FRET pairs results in higher precision, since 
less diverse structures are found for the ensemble within the confidence level of 68% corresponding to χ௡

ଶ ൏
1 (Fig. 1e). This agrees with the predictions from the pair selection algorithm (Fig. 1f). Notably, for sparser 
and smaller prior ensembles less FRET measurements are needed to achieve a target precision. In step 4, 
FRET data is acquired including uncertainty estimates (Supplementary Table 1).  
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Figure 1 | Automated FRET-assisted structure prediction on the example of the E. coli protein YaaA. 

(a) Step-by-step workflow for automated and optimally FRET-assisted structural modeling. (b) Collection 
of prior information: CASP predictions used as seed structures (red, cyan, blue), and the target crystal 
structure of YaaA (black, PDB ID: 5CAJ). Three out of eleven used seed structures are shown for clarity. 
(c) Generation of initial structural ensemble (gray) by NMSim without any FRET information, using CASP 
predictions (red, cyan, blue) as seed structures. (d) Network of FRET pairs used for guided NMSim 
simulations (dashed) and FRET screening (dashed and solid). Secondary structure elements (zigzag – α-
helix, 310-helix or π-helix; rectangle – β-bridge or β-ladder, line – loop) for three shown seed structures 
(red, cyan, blue) and the target (black). (e) Impact of the number of selected FRET pairs on the precision of 
the selected ensemble. The 𝜒௡

ଶ values and RMSD against the best structure for the structural ensemble of 
CASP targets are shown. The diversity of the structures with lower 𝜒௡

ଶ defines the precision of the 
FRET-selected structure. The green and magenta shaded areas correspond to 10 and 5 FRET measurements, 
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respectively. (f) Expected precision of the resulting structural model, depending on the number of used FRET 
measurements. For the sparser conformational ensemble (CASP ensemble, crosses), the decay is steeper 
than for the more diverse ensembles generated by NMSim (circles). (g)  FRET 𝜒௡

ଶ values and RMSD against 
the crystal structure (target) for different conformations (points). Black points stand for unrestrained NMSim 
sampling starting from homology models. Colored points represent FRET-guided NMSim simulations. 
Magenta points represent FRET-restrained MD simulations. Guided simulations stemming from different 
homology models are shown in different colors. (h) Attachment (dashed gray) of pseudo-atoms (orange 
spheres) and application of FRET-restraints (pink arrows) in FRET-restrained MD simulations. The 
accessible volume of a fluorophore is shown as green surface. (i) 𝜒௡

ଶ of the best conformers generated by 
FRET-guided NMSim or FRET-restrained MD simulations using different seed structures. 𝜒௡

ଶ starts to 
converge with ~23 selected FRET pairs. Line colors correspond to structure colors in (b). 

 
In step 5 we screen our large ensemble to find those structural models which agree well with the FRET 

observables corresponding to the ‘true’ structure. To our knowledge, no absolute quality measure exists for 
this purpose so far. Thus, we introduced a quantitative and reliable accuracy estimation by computing the 

goodness-of-fit, χ௡
ଶ ൌ χଶ/χ଺଼%

ଶ , to judge the agreement (see Online Methods, eq. 8). χ௡
ଶ  is an absolute 

measurement of quality, it relies on an accurate error estimation and requires FRET measurements that have 
not been used for previous optimization steps. Therefore, χ௡

ଶ  is analogous to cross-validation of the structural 
model and similar in spirit to Rfree known from X-ray crystallography15. For calculating χ௡

ଶ , we introduce for 
the first time a tool for the automatic quantitative estimation of the number of relevant degrees of freedom 
in FRET-based models. The tool can be applied to an arbitrary ensemble of structural models, which opens 
a convenient interface for integration with third party structural modeling tools. Using the χ௡

ଶ  criterion (χ௡
ଶ ൏

1), the FRET data allow us to extract a set of conformers (Supplementary Fig. 2): conformations with χ୬
ଶ 

values < 1.0 are identified as FRET-consistent models. If the diversity within the FRET-selected ensemble 
is sufficiently low (e.g., root mean square deviation (RMSDij) < 3 Å), the workflow is considered to 
converge. The diversity within the FRET-selected ensemble represents the precision of the obtained model. 

However, if no structure with good FRET agreement (χ௡
ଶ ൏ 1) were found in the initial ensemble (Fig. 1g, 

black points), we establish two new multi-scale structural sampling tools to extend this ensemble by FRET-
guided structural sampling (step (6): FRET-guided normal mode-based geometric simulations (NMSim 
approach13, Supplementary Fig. 3) employing a Metropolis-Hastings Monte Carlo algorithm and FRET-
restrained molecular dynamics simulations (Fig. 1h, Supplementary Fig. 4), which implement a novel 
implicit dye representation and experiment-based inter-dye distance restraints, rather than inaccurate atom-
atom distance restraints. The additional FRET information allows us to explore areas of phase space 
inaccessible for purely computational multi-scale simulations, so that novel and experimentally relevant 
(super-) tertiary structures can be resolved. Strikingly, FRET-guided refinement of different seed structures 
yields distinct limiting χ௡

ଶ  levels for the final structural models (Fig. 1g,i) with more accurate folds indicated 
by lower χ௡

ଶ  values. This allows us to detect errors in the folds of seed conformers that cannot be easily 
corrected, down to the level of secondary structure (Fig. 1d). Note that only four additional FRET-pairs are 
needed here for reaching a converged χ௡

ଶ  (grey box, Fig. 1i). 
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The workflow was benchmarked on simulated and experimental data. For that, we used an exemplary set of 
six proteins that are diverse in their structures, sizes (148 to 409 amino acids), and types of internal 
interconversion motions (hinge-bending, shear, and twist), and mode of interaction (induced fit or 
conformational selection 16,17, Supplementary Note 1). Some of these proteins have been used previously 
to investigate conformational sampling techniques18-20. For each protein, at least one conformation is 
available in the PDB. This conformation is used as a ‘true’ reference structure for accuracy estimation. For 
five proteins realistic FRET data was simulated as described previously8 (Supplementary Table 1, 
Supplementary Fig. 5, Supplementary Note 5). For T4 lysozyme (T4L) a comprehensive experimental 
data set was acquired in solution, which allowed us to resolve two short (4 µs) lived conformers referred to 
as “C1” and “C2”21, which were also observed by X-ray crystallography. Using simulated and experimental 
datasets, we applied our FRET-guided structural modeling procedure in order to arrive at a target structural 
model, starting from the seed conformer corresponding to the other state. In this benchmark study, we 
obtained state-specific structural models with a precision of 2 to 3.5 Å and an accuracy against the target 
structure between 2 and 3 Å (Table 4, Fig. 2, Supplementary Fig. 11) for as few as 13 to 23 FRET 
measurements, depending on the structural diversity and accuracy of the prior ensemble. This parsimony is 
attributed to the novel method for automatic determination of a set of optimal FRET pairs (Supplementary 
Fig. 1). These results illustrate that the predictive power and reliability of χ௡

ଶ  (Supplementary Fig. 6) yields 
target structures with an observed structural heterogeneity for protein backbone conformations at room 
temperature as found in all-atom MD simulations and NMR experiments22. The resolution of experimental 
FRET studies is sufficient to distinguish between the known conformers C1 and C2 (Supplementary Fig. 
5) which differ by 4 Å RMSD. 
 
Table 4 | Summary over the proteins used in the benchmark(**). 

Protein name PDB ID
#aa

RMSD / Å #pairs
seed target prior best min max guiding +validation

E. coli YaaA protein (*) 5caj 256 4.7-14.6 2.4 2.2 2.5 19 +4
LAO binding protein 2lao 1lst 238 4.7 2.4 1.8 2.4 12 +3
Calmodulin 1cfd 1ckk 148 9.8 2.4 2.4 3.1 13 +9
Atlastin1 4idn 3q5e 409 18.7 2.5 2.4 3.0 10 +9
Adenylate kinase 4ake 1ake 214 7.2 2.3 2.1 3.2 10 +8
T4 lysozyme (C2→C1) 3gun 172l 162 4.0 2.8 2.8 3.3 10 +10
T4 lysozyme (C1→C2) 172l 3gun 162 4.0 2.5 2.0 3.5 10 +10

#aa stands for the no. of amino acids in the protein, as used in the benchmark. The RMSD of the seed 
structure against the target structure is indicated as RMSDprior. RMSDmin/best/max of the FRET-selected 
structures against the target structure are indicated as an accuracy measure for the obtained ensembles; 
RMSDbest represents the deviation for the model with the lowest 𝜒௡

ଶ; RMSDmin and RMSDmax correspond to 
the minimum and maximum RMSD of the structural models within the confidence level. All RMSDs are 
calculated for Cα atoms only. For the T4L (underlined) experimental FRET data was used, for other proteins 
the data was simulated. 
(*)For E. coli YaaA protein, 10 seed structures were selected among the predictions submitted for the CASP 
11 experiment (target T806). This selection differs from the target crystal structure (RMSD of 4.7 to 14.6 Å) 
and represents different folds and secondary structures. The number of FRET measurements needed for 
reliable segregation of models is reported in the “#pairs” column. Initially predicted FRET pairs are used 
for guiding, while an extended set of FRET pairs is used for cross-validation.  
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(**)The starting ensembles, FRET networks and optimization cycles are summarized for all proteins in 
Supplementary Fig. 7. 

 

E. coli YaaA protein UPF0246 Adenylate kinase LAO binding protein 
RMSDprior|FRET = 4.7 | 2.2 – 2.5 Å RMSDprior|FRET = 7.2 | 2.1 – 3.2 Å RMSDprior|FRET = 4.7 | 1.8 – 2.4 Å

 
   

Calmodulin Atlastin1 T4 lysozyme C2 
RMSDprior|FRET = 9.8 | 2.4 – 3.1 Å RMSDprior|FRET = 18.7 | 2.4 – 3.0 Å RMSDprior|FRET = 4.0 | 1.0 – 3.5 Å

 

Figure 2 | Structures obtained by FRET-assisted modeling (magenta) and target X-ray structures (black) 
are shown for each of the benchmarked proteins. FRET-selected structures are depicted in transparent 
magenta as a measure for precision; a confidence level of 68% is assumed.  

 
In summary, we demonstrate against simulated and experimental data that accurate, efficient, and largely 

automated protein structure determination is possible based on optimally designed FRET experiments and 
structural modeling at multiple scales. In our view, the obtained results provide a major step ahead for 
quantitative FRET-assisted structural modeling. Furthermore, the approach described here should also be 
applicable to other label-based techniques such as EPR, paramagnetic relaxation enhancement NMR, 
vibrational spectroscopy, and their combinations, with minimal changes to the implementation. 
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Data availability 

The original experimental data supporting the findings in this work are available from the corresponding 
authors upon reasonable request. Before publication, they will be uploaded to Zenodo. All structural models 
based on experimental FRET restraints will be deposited at PDB-dev using the FLR-dictionary extension 
(developed by PDB and the Seidel group) on the IHM working group GitHub site. All structural models 
based on simulated FRET restraints will be deposited at the Model archive. 

 

Code availability 

Our automated FRET workflow relies upon three software tools: 
1. Olga [1] software for FRET-screening and optimal FRET pair selection (experiment planning) 
2. NMSim webserver [2] – a coarse-grained geometric simulations software for unrestrained conformational 
sampling and FRET-guided coarse-grained modelling. 
3. FRETrest [3] and LabelLib [4] – a set of command-line tools for FRET-restrained molecular dynamics 
simulations 
 
NMSim and Labelib are already accessible publicly. To provide early access to all of our software tools for 
the reviewers and editors, we created special github account, that is given access to the repositories of Olga 
and FRETrest. 
 
Github username: mpc-guest 
password: Rh0damine110 
 
The software and documentation are already accessible. Currently we continue improving the 
documentation. Before publication all components will be made public on github 
 
[1]: https://github.com/Fluorescence-Tools/Olga 
[2]: http://nmsim.de 
[3]: https://github.com/Fluorescence-Tools/FRETrest 
[4]: https://github.com/Fluorescence-Tools/labellib 
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Online	Methods	

1. Proteins used in the benchmark. 
To demonstrate our structural modeling approach and assess its performance, we selected six protein 

systems: LAO binding protein, adenylate kinase, calmodulin, atlastin1, E. coli YaaA protein and T4 
lysozyme. The proteins were selected such that the conformational transition between prior and target 
conformer covers different types of internal motions (hinge-bending, sheer, bend, and twist). The proteins 
span a wide range of sizes, from 148 amino acids (calmodulin) to 409 amino acids (atlastin1). 

For each of the first four proteins23-32, at least two crystal structures are known. One crystal structure is 
considered the “target” structure, another one of a different conformational state was used as a prior (Table 
4). E. coli YaaA protein was one of the targets of the CASP11 experiment14 (T806). For this protein, 10 
homology models provided by the participants of the CASP11 experiment were used as the prior. These 
seed structures were selected from 639 complete protein models submitted to the CASP11 experiment by, 
first, removing those structures that are similar to the target (Cα atom RMSD < 4.6 Å). The remaining 589 
models were clustered into 100 clusters by their secondary structure using Hierarchical agglomerative 
clustering33. From these 100 cluster representatives, 10 were selected by hand such that they represent 
different tertiary structures and different Cα atom RMSD with respect to the target (4.6 ≤ RMSD ≤ 14.6 Å, 
CASP model ID: Tc806TS041_1, Tc806TS065_1, Tc806TS276_1, Tc806TS345_1, Tc806TS357_1, 
Tc806TS420_1, Tc806TS428_1, Tp806TS065_1, Ts806TS065_1, Ts806TS276_1).  

2. Quality metric for evaluation of FRET pair sets: ⟨⟨RMSD⟩⟩. 
To assess, how well certain sets of DA pairs can help resolving a protein structure, we introduce a quality 

parameter⟨⟨RMSD#conf⟩#ref⟩, or short ⟨⟨RMSD⟩⟩, an estimate for expected precision (uncertainty). Assuming 

that one unknown structure from the prior ensemble is correct, ⟨⟨RMSD⟩⟩ is defined to serve as an estimate 
for what would be the precision if we determined it from experiment (Supplementary Fig. 8). Conceptually, 
first, we take an arbitrary reference model from the prior and assume that it corresponds to the ‘true’ structure 
of the molecule in experiment. For this reference, a full reference set of FRET observables is simulated. 
Second, FRET observables are simulated for each conformer in the prior and tested against the reference set 
of observables, 𝜒ଶ and p-values are calculated, and the precision ⟨RMSD#conf⟩  for this reference is 
determined. This procedure is repeated for each reference conformer from the prior, and the average over 
⟨RMSD#conf⟩ is calculated, yielding ⟨⟨RMSD#conf⟩#ref⟩ (Supplementary Fig. 8). 

For any given set of N prior conformations, ⟨⟨RMSD⟩⟩ is calculated in three stages (Supplementary Fig. 
1): First, a N x N matrix is formed from RMSD values of all pairwise combinations of conformers in the 
prior: 

 

𝑅𝑀𝑆𝐷௖௢௡௙,௥௘௙ ൌ ඩ
1

𝑁௔௧௢௠௦
෍ ฮ𝑟௥௘௙,௔௧ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ െ 𝑟௖௢௡௙,௔௧ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ฮ

ଶ
ேೌ೟೚೘ೞ

௔௧ୀଵ

 (1)

𝑟𝑒𝑓 stands for the reference conformer, 𝑐𝑜𝑛𝑓 for the tested conformer, 𝑟௔௧ሬሬሬሬሬ⃗  is the position of an atom in 
space, 𝑁௔௧௢௠௦ is the number of atoms in the protein. In this study only Cα atoms are considered for RMSD 
estimation. Second, the N x N matrix of FRET p-values are calculated for the same conformer pairs. To 

evaluate p-values, we start by calculating 𝜒௖௢௡௙,௥௘௙
ଶ , the 𝜒ଶ of a tested conformation with respect to the 

reference conformation: 
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𝜒௖௢௡௙,௥௘௙

ଶ ൌ ෍ ൭
𝑅௖௢௡௙

ሺ௜ሻ െ 𝑅௥௘௙
ሺ௜ሻ

𝛿௥௘௙
ሺ௜ሻ ൱

ଶே೘೐ೌೞೠೝ೐೘೐೙೟ೞ

௜ୀଵ

 (2)

𝑅௖௢௡௙
ሺ௜ሻ  is the FRET distance calculated for FRET pair 𝑖 on a conformational model 𝑐𝑜𝑛𝑓, 𝑅௥௘௙

ሺ௜ሻ  is the 

corresponding distance in the reference conformer, 𝛿௥௘௙
ሺ௜ሻ  is the expected experimental error. 𝑁ௗ௢௙ is the 

number of degrees of freedom in 𝜒ଶ test: 
 𝑁ௗ௢௙ ൌ 𝑁௠௘௔௦௨௥௘௠௘௡௧௦ െ 𝑁ௌெ௉  (3)
𝑁௠௘௔௦௨௥௘௠௘௡௧௦ is the number of FRET measurements (pairs) taken, 𝑁ௌெ௉ is the number of independent 

relevant coordinates (parameters) for the conformational model (see below). For every conformer pair, we 

can calculate a p-value or a probability that a sample 𝜒ଶ will be larger than 𝜒௖௢௡௙,௥௘௙
ଶ : 

 
𝑝௖௢௡௙,௥௘௙ ൌ 𝑝ሺ𝜒௖௢௡௙,௥௘௙

ଶ , 𝑁ௗ௢௙ሻ ൌ න 𝑓ே೏೚೑
൫𝜒ଶ ൯

ାஶ

ఞ೎೚೙೑,ೝ೐೑
మ

𝑑𝜒ଶ  (4)

𝑓ே೏೚೑
ሺ𝜒ଶሻ denotes the chi-squared distribution: 

 
𝑓ே೏೚೑

൫𝜒ଶ ൯ ൌ
1

2ே೏೚೑/ଶ𝛤ሺ𝑁ௗ௢௙/2ሻ
ሺ𝜒ଶ ሻே೏೚೑/ଶିଵ𝑒ିఞమ /ଶ (5)

𝛤 is the Gamma function. Third, ⟨⟨RMSD⟩⟩ is evaluated as a weighted average over the RMSD matrix 
using the respective p-values as weights. ⟨⟨RMSD⟩⟩ is a double average over all reference conformers as 
well as all conformers being tested: 

 

⟨⟨RMSD⟩⟩ ൌ
1

𝑁௖௢௡௙
෍

∑ 𝑝௖௢௡௙,௥௘௙𝑅𝑀𝑆𝐷௖௢௡௙,௥௘௙
ே೎೚೙೑
௖௢௡௙ୀଵ

∑ 𝑝௖௢௡௙,௥௘௙
ே೎೚೙೑

௖௢௡௙ୀଵ

ே೎೚೙೑

௥௘௙ୀଵ

 (6)

3. FRET screening. 
To assess, how well a given structural model or structural ensemble agrees with experimental FRET data, 

we calculate the 𝜒ଶ value for each structure in the ensemble. To do that, we need to estimate FRET 
observables corresponding to the specified conformer. We achieve this by simulating the Accessible Volume 
(AV) of the fluorophore attached to a protein by a flexible linker12 (see Supplementary Note 5). 

In general, reduced chi-squared 𝜒௥
ଶ, also known as chi-squared per degree of freedom, is used as an 

absolute quality parameter of a model: 
 𝜒௥

ଶ ൌ 𝜒ଶ /𝑁ௗ௢௙ (7)
However, for values of 𝑁ௗ௢௙ ൏ 30, a constant confidence level corresponds to different values of 𝜒௥

ଶ. 

Therefore, using 𝜒௥
ଶ to compare models with different 𝑁ௗ௢௙ is inconvenient. To overcome this, we introduce 

an alternative metric, normalized chi-squared 𝜒௡,଺଼%
ଶ , which equals to 1 for p = 68% (one sigma) by 

definition, independent of the 𝑁ௗ௢௙ value (Supplementary Fig. 9): 

 𝜒௡
ଶ ൌ 𝜒௡,଺଼%

ଶ ≡ 𝜒ଶ /𝐼𝑛𝑣. 𝜒ଶ ሺ𝑝 ൌ 0.68, 𝑁ௗ௢௙ሻ (8)
Where 

𝐼𝑛𝑣. 𝜒ଶ ൫𝑝, 𝑁ௗ௢௙൯ ൌ
2ିே೏೚೑/ଶ

𝛤ሺ𝑁ௗ௢௙/2ሻ
𝑝ିே೏೚೑/ଶିଵ𝑒ିଵ/ሺଶ௣ሻ  (9)

is the inverse chi-squared distribution. To visualize the precision of the generated structural ensembles, 
we display conformations on two-dimensional plots (Supplementary Fig. 2). 
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Given an ensemble of structural models, 𝜒௡
ଶ can be calculated for each conformer. Structures that show 

better agreement with FRET data have lower 𝜒௡
ଶ. If the FRET-selected ensemble (χ௡

ଶ ൏ 1ሻ is too diverse 
(e.g., RMSDij > 3 Å), extra FRET pairs can be selected and measured to improve resolution (see below). In 

this benchmark reference FRET data (𝑅௥௘௙
ሺ௜ሻ , 𝛿௥௘௙

ሺ௜ሻ ሻ were determined from experiment for T4 lysozyme and 

simulated for other benchmarked proteins using the ‘true’ crystal structure conformations, as described 
previously8. Structures of T4 lysozyme and its homologs from the PDB were screened against the 
experimental datasets C1 and C2 in order to select reference conformations for each state (Supplementary 
Fig. 5). As a result PDB ID 172L appears to correspond to C1, and PDB ID 3GUN was selected for C2. 

4. Selection of a set of optimal FRET pairs. 
To maximize the precision of FRET-assisted protein structure determination under the condition of a 

limited number of experimental measurements, we developed a method for automated determination of the 
most informative labelling sites and donor-acceptor (DA) pairs. We define sets of pairs to be most 
informative if they lead to the highest expected precision, i.e., lowest ⟨⟨RMSD⟩⟩, of a structural model. To 
find such an optimal DA pair set, we test three different feature selection algorithms (Supplementary 
Fig. 10): greedy forward selection (Supplementary Note 2), greedy backward elimination (Supplementary 
Note 3), and an algorithm based on mutual information and inspired by a Minimum Redundancy Maximum 
Relevance (mRMR) algorithm34 (Supplementary Note 4). FRET pairs are selected among the full set of all 
possible pairwise combinations of available labeling sites. Labeling sites can be excluded from calculations 
based on additional prior information provided by the user, e.g. accessibility, chemical nature and influence 
on function and stability as determined from mutation analysis or sequence coevolution data. For the proof 
of principle study with simulated data, we assume that these effects are negligible. However, considering the 
experimental data sets of T4L, care was taken to avoid these problems. For T4L automated FRET pair 
selection was performed from only 33 FRET pairs as opposed to theoretically possible 1622/2 residue-residue 
combinations. These 33 pairs were earlier chosen by authors for a functional study of T4L21 (see Online 
Methods section 9). Despite of this low number of available FRET-pairs, only minor decrease in expected 
precision was observed as compared to other proteins (Supplementary Fig. 7). 

In greedy forward feature selection, in the first iteration, ⟨⟨RMSD⟩⟩ is calculated for each possible DA 
pair, and that pair is selected for the DA set that yields the minimal ⟨⟨RMSD⟩⟩. In the next iterations, DA 
pairs remaining from the previous iteration are probed against the DA set to determine which one leads to 
the largest decrease in ⟨⟨RMSD⟩⟩; that DA pair is then added to the DA set. The algorithm stops when a 
desired ⟨⟨RMSD⟩⟩ is reached. Therefore, for conformational ensembles < 100,000 structures, the current 
implementation converges in less than a day on a 4-core desktop computer.  

In greedy backward elimination, in the first iteration, ⟨⟨RMSD⟩⟩ is calculated for DA sets containing all 
possible DA pairs but one. That pair is eliminated for which the remaining DA set yielded the smallest 
⟨⟨RMSD⟩⟩; the remaining DA set is narrowed further in an iterative manner. The algorithm needs to run as 
many iterations as there are DA pairs available and is therefore slower than the greedy selection algorithm. 
One run of this algorithm for an ensemble of less than 10,000 conformers completes in about one day on a 
4-core desktop computer in the current implementation. 

In the mutual information-based DA pair selection algorithm Shannon conditional entropies are calculated 
for all pairwise combinations of DA pairs. In the first iteration, the DA pair with the highest Shannon entropy 
is selected. In the next iterations, the DA pair with the highest minimum Shannon conditional entropy with 
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respect to the previous DA pairs is selected (Supplementary Note 4). That way, the DA pair providing the 
highest amount of new information not provided by the previously selected DA pairs is selected. One run of 
this algorithm for an ensemble of less than 100,000 conformers completes in about one day on a 4-core 
desktop computer in the current implementation. 

5. Estimation of the complexity of the structural model. 
Estimation of complexity for a structural model that is used in integrative protein structure determination 

is essential for quantitative accuracy assessment and automated experiment design. We quantify the 
complexity of a structural model by the number of relevant independent parameters (coordinates, 𝑁ௌெ௉) 
needed to describe the corresponding conformational ensemble to a certain precision ⟨⟨RMSD⟩⟩. If the 
structural model is simple, 𝑁ௌெ௉ can be calculated analytically, for example, for a rigid body model, NSMP ൌ 
ሺNbodies-1ሻ * 6 - Nbonds. For non-rigid body models, coming from other computational tools, an analytical 
expression for 𝑁ௌெ௉ is usually unavailable. Examples of such tools are numerous: molecular dynamics 
simulations (all-atom or coarse-grained), normal mode-based models, homology models, elastic network 
models, and others.  

We thus introduce a heuristic approach for automated 𝑁ௌெ௉ determination, which requires as an input 
only the user-provided conformational ensemble. Initially, to obtain an 𝑁ௌெ௉ estimate, we start by 
assuming 𝑁ௌெ௉,଴ ൌ 0, and determine a set of DA pairs needed to describe the conformations within an 

ensemble with a desired precision ⟨⟨RMSD⟩⟩ employing our DA pair selection algorithm. Each DA pair can 
be seen as a coordinate, and the number of DA pairs corresponds to our definition of 𝑁ௌெ௉. Second, we use 
the number of FRET pairs as predicted by the algorithm at the first stage as the true 𝑁ௌெ௉ and re-run the pair 
selection to obtain an estimate for the number of measurements needed for FRET-based structure 
determination. Thereby, the number of required measurements is always larger than the model’s complexity 
(𝑁ௌெ௉), reflecting that statistical significance can only be properly assigned to an overdetermined model 
(𝑁ௗ௢௙ ൐ 0, see eq. 3). 

For a FRET-restrained structural model (e.g., generated by FRET-guided NMSim or FRET-restrained 
MD simulations, see below) the same procedure can be used. Presuming that the explored degrees of freedom 
in the FRET-restrained model cover all FRET restraints, one can conservatively assume 𝑁ௌெ௉ ൒
𝑁ிோா் ௥௘௦௧௥௔௜௡௧௦. In this study, we use 𝑁ௌெ௉ ൌ 𝑁ிோா் ௥௘௦௧௥௔௜௡௧௦ as a complexity estimate for all 
FRET-restrained models. Hence, FRET-guided structural sampling must be followed by an additional round 
of pair selection, so that more FRET pairs are measured for cross-validation. 

Overall, these approximations apparently lead to good 𝑁ௌெ௉ estimates, and further independent 
measurements do not change 𝜒௡

ଶ significantly (Fig. 1i). Reliability of 𝑁ௌெ௉ estimates is also evident from 
the correlation between 𝜒௡

ଶ and accuracy against the target structure (Supplementary Fig. 6). 

6. Unbiased conformation sampling by NMSim. 
Structural ensembles unbiased by experimental FRET data were generated by the NMSim software13. 

Ten independent and unbiased NMSim simulations generating 10,000 conformations each were performed, 
starting from the prior structure and using default parameters for sampling of large scale motions. These 
trajectories are clustered and serve as prior candidates. NMSim is a normal mode-based geometric 
simulation approach for multiscale modeling of protein conformational changes that incorporates 
information about preferred directions of protein motions into a geometric simulation algorithm. NMSim 
follows a three-step protocol: In the first step, the protein structure is coarse-grained by the software FIRST35 
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into rigid parts connected by flexible links36. In the second step, low-frequency normal modes are computed 
by rigid cluster normal mode analysis (RCNMA)37. In the third step, a linear combination of the first 10 
normal modes was used to bias backbone motions along the low-frequency normal modes, while the side 
chain motions were biased towards favored rotamer states. Detailed list of used simulation parameters is 
given in the Supplementary Note 6. 

7. FRET-guided NMSim. 
To improve the sampling of the conformational space in regions most relevant according to experiment, 

we extended the NMSim approach by a Markov Chain Monte Carlo step to prioritize conformations lying 
in such regions (Supplementary Fig. 3). In every NMSim iteration, the generated conformation is scored 

with respect to its agreement with experimental data using the χ௡
ଶ  metric. Then, according to the Metropolis-

Hastings approach, 
 

𝑝௔௖௖௘௣௧ ൌ exp ቆ
𝜒௡,௣௥௘௩௜௢௨௦

ଶ െ 𝜒௡,௖௨௥௥௘௡௧
ଶ

𝑘𝑇
ቇ  (10)

is computed, and the conformation is accepted and used in the next NMSim iteration if p is larger than a 
uniformly distributed random number sampled from the range [0, 1]; else, the conformation is discarded, 
and the previous one is used in the next NMSim iteration. As a result, conformations are generated that are 
both stereochemically plausible and agree with experimental data. To improve the sampling and enable the 
exploration of multiple local minima, an annealing procedure is applied in which kT is varied from almost 0 

to 1 units of χ௡
ଶ  and back to 0 (see Supplementary Note 6). A single FRET-guided NMSim simulation 

contains two such annealing cycles. If, models with good FRET agreement (χ௡
ଶ → 1ሻ cannot be obtained 

from FRET-guided simulations, alternative seed structures should be considered. 

8. FRET-restrained MD. 
To reconstruct structures to maximum detail, we developed a procedure to incorporate FRET-restraints 

in atomistic molecular dynamics (MD) simulations (Supplementary Fig. 4). To generate the restraints, first 
Accessible Volume (AV) calculations are performed for each labeling position. Second, pseudo atoms are 
positioned at the mean position of every accessible volume. These pseudo atoms do not interact with protein 
or solvent atoms. To keep the pseudo atoms in their initial positions relative to the corresponding part of the 
back-bone, harmonic restraints are used: Pseudo bonds are created between the pseudo atom and Cα and Cβ 
atoms of amino acids up to two residues towards the C- or N-termini of the protein from the amino acid, 
where the fluorophore linker is attached. Thus, each pseudo atom is anchored to ten nearby backbone atoms. 
The positions of pseudo atoms, the anchoring bonds, and FRET restraints are recalculated every 2 ns during 
the simulation to account for changes in local structure. 

To mimic the measured FRET distances, pseudo atoms are restrained with respect to each other using 
harmonic-linear restraints. If the distance between pseudo atoms corresponds exactly to the measured donor-
acceptor distance, no additional force is applied to pseudo atoms. To prevent unphysical unfolding of the 
protein, the FRET-restraint force is capped at an empirically determined value Fmax = 50 pN, which is reached 
when the bond length (RDA) is more than one standard error (𝛿௘௫௣) away from the optimum (Rexp, 

Supplementary Fig. 4D). The error for each FRET distance is determined from experimental data. Force 
constants for each FRET-restraint are tuned such that for every pseudo atom the magnitude of the total 

FRET-restraints vector is  Fmax, resulting in force constants for FRET restraints in the range from 0.7 to 14 
pN / Å, depending on their collinearity. Force constants of the pseudo bonds that attach pseudo atoms to 
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their local backbone atoms are set 10 times higher than those for FRET restraints. FRET restraints are 
implemented using the AMBER interface for NMR restraints (“DISANG” file). 

It is worthwhile to note that, unlike the immediate position of a fluorophore, its mean position with respect 
to the local backbone does not change as quickly. This way, we avoid complications of explicit dye 
simulations, such as potential inaccuracies of dye force field parametrizations and large convergence times 
(> 100 ns38) of fluorophore diffusion. Furthermore, if FRET restraints were applied to explicitly modelled 
fluorophores directly, the flexible dye linker would become an entropic spring39 and absorb virtually all of 
the strain. Finally, FRET observables determined in experiment have a statistical nature: they represent state-
specific ensemble averages and underlying distributions, rather than immediate quantities. Therefore, 
application of ‘statistical’ FRET restraints to pseudo atoms that are constructed to mimic statistically 
averaged fluorophore positions is more straightforward and effective. 

The AMER16 suite of molecular simulation codes40 was used to perform MD simulations. All 
co-crystallized waters and ligands were removed from the crystal structures. Hydrogen atoms were removed 
and re-added by tleap41 from the AMBER Tools suite. The TIP3P explicit water model42 was used to solvate 
proteins in a periodic truncated octahedral box with at least 12 Å of solvent in every direction from the 
protein surface. Sodium and chloride counter ions were added to neutralize the systems. MD simulations 
were performed with the ff14SB force field43 using the GPU version of pmemd44. The SHAKE algorithm45 
was used to constrain bond lengths of hydrogen atoms. Long-range electrostatic interactions were evaluated 
using the particle mesh Ewald method46. Hydrogen mass repartitioning47 and a time step of 4 fs were used. 
A five-stage equilibration procedure was pursued: First, 100 steps of steepest descent and 400 steps of 
conjugate gradient minimization were performed, while solute atoms were restrained to their initial positions 
by harmonic restraints with force constants of 5 kcal mol−1 Å−2. Second, the temperature of the system was 
raised from 100 K to 300 K in 50 ps of NVT-MD simulations. Third, 150 ps of NPT-MD simulations were 
performed to adjust the system density. Finally, the force constants of harmonic restraints were gradually 
reduced to zero during 2 ns of NVT-MD simulations. Production NVT-MD simulations were carried out at 
300 K, using the Berendsen thermostat48 and a coupling constant of 0.5 ps. Three independent replicas of 
MD simulations (1μs per simulation) were performed for each system using different random number 
generator seeds to assign initial velocities. 

9. T4 Lysozyme site specific mutation, purification and labeling. 
T4L site directed mutagenesis was performed on the cysteine-less pseudo-wild-type encoded backbone 

using the pET11a (Life Technologies, Corp) vector as previously described49-51. For protein expression and 
purification, the plasmid containing T4L desired mutations (a unnatural amino acid –p-acetyl-L-
phenylalanine or pAcPhe, in the N-terminal subdomain (NTsD) and the replacement to a Cys in the C-
terminal subdomain (CTsD)) was co-transformed with pEVOL50 for the introduction of (pAcPhe) into 
BL21(DE3) E. coli strains (Life Technologies Corp.). Transformed E. coli were plated onto LB- agar plates 
supplemented with ampicillin and chloramphenicol for single colony selection. For each variant, a single 
colony was inoculated into 100 mL of LB with antibiotics and grown overnight at 37 °C in a shaking 
incubator, followed by inoculation of a 1 L LB medium supplemented with the respective antibiotics and 0.4 
g/L of pAcPhe (SynChem) with 50 mL of the overnight culture. The culture was grown at 37 °C until an 
OD600 of 0.5 was achieved, for further induction. The protein production was induced for 6 hours by 
addition of 1 mM IPTG and 4 g/L of arabinose. Harvested cells were lysed in 50 mM HEPES, 1 mM EDTA, 
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and 5 mM DTT pH 7.5 and purified using a monoS 5/5 column (GE Healthcare) with an eluting gradient 
from 0 to 1 M NaCl according to standard procedures. High-molecular weight impurities were removed by 
passing the eluted protein through a 30 kDa Amicon concentrator (Millipore), followed by subsequent 
concentration and buffer exchange to 50 mM PB, 150 mM NaCl pH 7.5 of the protein flow through with a 
10 kDa Amicon concentrator.  

Site specific labeling of T4L was accomplished using orthogonal chemistry following manufacturer 
suggestion. For labeling the Keto functional group of pAcPhe at the NTsD, the Alexa 488 with 
hydroxylamine linker chemistry was used (Life Technologies Corp.). Cysteine sites were labeled via a thiol 
reaction with maleimide linkers of Alexa-647. FRET or DA variants were labeled sequentially - first thiol 
and second the keto handle51. A proper Donor Only reference sample was only kept before proceeding with 
the acceptor labeling. The selected FRET pair has a Förster distance R0 of 52 Å. 

10. FRET Experiments and Analysis. 
To resolve the conformational heterogeneity of T4L, Donor only and FRET labeled T4L variants were 

studied by time-resolved fluorescence spectroscopy using Time Correlated Single Photon Counting 
(TCSPC) and single-molecules studies with confocal multiparamter fluorescence detection. 

Donor only and FRET labeled T4L variants were measured by TCSPC using either an IBH-5000U (IBH, 
Scotland) or a Fluotime 200 (Picoquant, Germany) system. The excitation source of the IBH machine were 
a 470 nm diode laser (LDH-P-C470, Picoquant, Germany) operating at 10 MHz for donor excitation and a 
635 nm (LDH-P-C635, Picoquant, Germany) for acceptor excitation. The excitation and emission slits were 
set to 2 nm and 16 nm, respectively. The excitation source of the Fluotime200 system was a white light laser 
(SuperK extreme, NKT Photonics, Denmark) operating at 20 MHz for both donor (485 nm) and acceptor 
(635 nm) excitation with excitation and emission slits set to 2 nm and 5 nm, respectively. Additionally, in 
both systems, cut-off filters were used to reduce the amount of scattered light (>500 nm for donor and >640 
nm for acceptor emission).  

For green detection, the monochromator was set to 520 nm and for red detection to 665 nm. All 
measurements were conducted under magic angle conditions (excitation polarizer 0°, emission polarizer 
54.7°, VM), except for anisotropy where the position of the emission polarizer was alternately set to 0° (VV) 
or 90° (VH).  

In the IBH system, the TAC-histograms were recorded with a bin width of 14.1 ps within a time window 
of 57.8 ns, while the Fluotime200 was set to a bin width of 8 ps within a time window of 51.3 ns. The average 
number of collected photons per sample were 30 ൈ 10଺ photons. 

A global joint analysis of the donor only and FRET labeled samples was implemented in order to assure 
proper donor reference samples, determination of the mean inter-dye distances, ⟨𝑅஽஺⟩, and assignment of 
states by sharing the population parameters on the FRET labeled samples. The analysis and justification of 
the methods are reported in Sanabria et al21. In short, the donor only labeled samples were fit with a 
multiexponential decay model (eq. 25, Peulen et al)52. All FRET induced donor VM decays were fit using 
the corresponding donor only decay parameters with a sum of Gaussian distributed states to derive ⟨𝑅஽஺⟩. 
By using a global analysis, we assure conformational states are assigned via the linked population fractions. 
A 2σ statistical uncertainty and an error propagation rule considering 𝜅ଶ error was used to consider the 
overall uncertainty (+/- err). The derived distances for two states are presented in in Supplementary Table 
1. The error estimation considers: (i) upper estimates for the uncertainty of the orientation factor53, κ2, (ii) 
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statistical uncertainties of the analysis52, (iii) estimates for systematic errors due to imprecise reference 
samples52, and (iv) uncertainty estimates for modelling the spatial distribution of the dyes based on the dye’s 
residual anisotropies9 (see Supplementary Table 2). 
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